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1. Packing odd trails



Theorem (Menger)
The maximum number of edge-disjoint (u, v)-paths in a
graph is the minimum size of a (u, v)-cut.
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How many edge-disjoint odd (u, v)-trails are there?
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even if many edges are needed to cover all such paths.
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2. Totally odd immersions



An immersion of H in G maps vertices to vertices and
edges to edge-disjoint trails.

Question
When does a graph have an immersion of H where all the
trails have odd length?
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Main contributions
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The perimeter of a vertex-set X wrt bipartite subgraph
H:

p(X ,H) = |E(X) \ E(H)|+ 1
2 |δ(X)|



1. Bounds for the “odd edge-connectivity”.
2. Better bounds for Eulerian graphs.
3. A submodular inequality for perimeter.
4. A Gomory–Hu Theorem for minimum-perimeter

sets.
5. A rough structure theorem for graphs with no

totally odd Kt-immersion.
6. More results forcing totally odd immersions.



Packing edge-disjoint
(u, v)-trails of odd length



Theorem
Given G, vertices u, v, and H a maximum bipartite
subgraph, if G + uv is 2-edge-connected, then either:

1. G has k edge-disjoint odd (u, v)-trails;

2. G has a (u, v)-cut with at most 6k − 2 edges; or
3. u, v are on the same side of H, and G has a set R with

u, v ∈ R and perimeter p(R,H) ≤ 3(k − 1).
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Proof

Trick: first look for odd trails with ends in {u, v}.
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In fact, find trails with exactly one edge outside H
greedily choosing these edges.
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The structure of an auxiliary graph gives a small cut. . .
and a set with p(R,H) ≤ 3k in G.

We also have k trails, which we can turn into
(u, v)-trails given sufficient edge-connectivity.
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A graph has either k edge-disjoint odd (u, v)-trails or a set
of at most 6k − 2 edges intersecting all such trails.
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Packing edge-disjoint odd
(u, v)-trails in Eulerian graphs
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There’s another way to find odd trails with ends in
{u, v}, and in Eulerian graphs, its bound relates to
perimeter.
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Theorem (Chudnovsky, Geelen, Gerards, Goddyn,
Lohman, Seymour)
Let H be a group-labelled graph and let A ⊆ V(H). The
max # of vertex-disjoint non-zero A-paths in H is

min
S,D

|S|+
∑

components K
of H−S−D

⌊
|(A ∪ V(D)) ∩ V(K)|

2

⌋
where S ⊆ V(H) and D ⊆ E(H) has no non-zero cycles and
no non-zero A-paths.



Theorem
The max # of edge-disjoint odd (r, r)-trails in a graph G is

min
R,H

|E(R) \ E(H)|+
∑

components K
of G−R

⌊
|δ(V(K))|

2

⌋
where r ∈ R ⊆ V(G) and H ⊆ G is bipartite.

If G is Eulerian, this is a minimum perimeter!
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Modify a collection of {u, v}-trails to maximize the
number of edges used.
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odd

odd



Modify a collection of {u, v}-trails to maximize the
number of edges used.
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Then rearrange intersecting odd trails into (u, v)-trails.
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Then rearrange intersecting odd trails into (u, v)-trails.

u v



Theorem
Let α ∈ (0, 1]. If G is Eulerian, either

1. G has k edge-disjoint odd (u, v)-trails;
2. G has a (u, v)-cut with fewer than (3 − 2α)k edges; or
3. G has a bipartite subgraph H with u, v on the same

side and a set R with u, v ∈ R and p(R,H) < (1 + α)k.



Summary of our packing results

2k 3k 4k 5k 6k 7k 8k

2k

3k

4k

×
◦

λ(u, v)

minp(R,H)

No k odd trails k odd trails if Eulerian k odd trails



Perimeter and submodularity



A function f : 2X → R is called submodular if

f (X ∪ Y) ≤ f (X) + f (Y)− f (X ∩ Y).

For example, |δX| is submodular.

Theorem
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2 |δ(X)|

is a submodular function.
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Theorem (Gomory/Hu)
For every graph there is an edge-weighted tree which
encodes minimum cuts for each vertex pair.
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Theorem
For every graph there is an vertex-weighted rooted forest
encoding minimum-perimeter sets for each vertex.



2

4

6

9

5

u v

Theorem
For every graph there is an vertex-weighted rooted forest
encoding minimum-perimeter sets for each vertex.



Totally odd immersions of
cliques



An immersion of H in G maps vertices to vertices and
edges to edge-disjoint trails.

An immersion of Kt is a set of t vertices in G and an
edge-disjoint collection of

( t
2
)

trails connecting the
pairs.



Theorem (DeVos, McDonald, Mohar, Scheide;
Wollan)
If G has no Kt-immersion, it has a laminar family of cuts
of size < (t − 1)2 which partition V(G) into sets of size < t.



Theorem (DeVos, McDonald, Mohar, Scheide;
Wollan)
If G has no Kt-immersion, it has a laminar family of cuts
of size < (t − 1)2 which partition V(G) into sets of size < t.



Theorem
If G has no totally-odd Kt-immersion, it has a laminar
family of cuts of size < 6t(t − 1) partitioning V(G) into
sets which are

• small (have size < t), or
• contained in sets of perimeter < 3

2 t(t − 1).



Theorem
If G has no totally-odd Kt-immersion, it has a laminar
family of cuts of size < 6t(t − 1) partitioning V(G) into
sets which are

• small (have size < t), or

• contained in sets of perimeter < 3
2 t(t − 1).



Theorem
If G has no totally-odd Kt-immersion, it has a laminar
family of cuts of size < 6t(t − 1) partitioning V(G) into
sets which are

• small (have size < t), or
• contained in sets of perimeter < 3

2 t(t − 1).



Theorem
If G has no totally-odd Kt-immersion, it has a laminar
family of cuts of size < 6t(t − 1) partitioning V(G) into
sets which are

• small (have size < t), or
• contained in sets of perimeter < 3

2 t(t − 1).



Theorem
If G has no totally-odd Kt-immersion, it has a laminar
family of cuts of size < 6t(t − 1) partitioning V(G) into
sets which are

• small (have size < t), or
• contained in sets of perimeter < 3

2 t(t − 1).



Theorem
If G has no totally-odd Kt-immersion, it has a laminar
family of cuts of size < 6t(t − 1) partitioning V(G) into
sets which are

• small (have size < t), or
• contained in sets of perimeter < 3

2 t(t − 1).



More totally odd immersions



Conjecture (Lescure, Meyniel; Abu-Khzam,
Langston)
Every graph with chromatic number t has a Kt-immersion.

Question
Does every graph with chromatic number t have a
totally-odd Kt-immersion?
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4n.

Then G
has a totally-odd immersion of Kn/2 rooted on any chosen
rainbow set of vertices.
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Conclusion



1. Introduced the perimeter measure.
2. Found bounds for the “odd edge-connectivity”.
3. Explored the submodular inequality for perimeter.
4. Proved conditions forcing totally-odd

immersions.
5. Described polytime algorithms.
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