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Ore’s theorem (1960) on Hamilton circuits

Brooks’ theorem (1941) on vertex colouring

Vizing’s theorem (1964) on edge colouring

The Chvátal-Lovász theorem (1974) on semi-kernels

Lu’s theorem (1996) on arborescences of tournaments

Gutin’s theorem (1994) on diameters of graph orientations
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Ore’s Theorem

Ore’s Theorem

Let G be a simple graph on n ≥ 3 vertices such that d(u) + d(v) ≥ n for
any nonadjacent u, v . Then G contains a Hamilton cycle.
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Ore’s Theorem

Let G be a simple graph on n ≥ 3 vertices such that d(u) + d(v) ≥ n for
any nonadjacent u, v . Then G contains a Hamilton cycle.

Colour G blue

and add red edges to
fill out Kn. Pick a Hamilton cycle C .
We will find a C ′ with more blue
edges. So x+ is adjacent to a
y+ ∈ S+ and we can get a “bluer”
cycle.

x x+

y

y+
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Ore’s Theorem

Let G be a simple graph on n ≥ 3 vertices such that d(u) + d(v) ≥ n for
any nonadjacent u, v . Then G contains a Hamilton cycle.

Let xx+ be a red edge in C .

Consider S = NG (x) and their
successors S+ on C . Now,

dG (x
+) ≥ n − dG (x)

= |V | − |S |
= |V | − |S+|
> |V \ (S+ ∪ {x+})|

So x+ is adjacent to a y+ ∈ S+ and
we can get a “bluer” cycle.
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Ore’s Theorem

A red-blue Kn:
bluest Hamilton circuit

lies fully in G .
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Brooks’ Theorem

Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).
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Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).

A greedy colouring always has at most ∆(G ) + 1 colours:

How can we avoid using the last colour? Maybe we can order the vertices
such that no vertex has ∆(G ) neighbours before it.
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Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).

Case 1: G is not regular.

Use a reverse depth-first ordering, ending with a root r with d(r) < ∆(G ).
Then every vertex except r has a neighbour which comes after it. In
particular, every vertex has fewer than ∆(G )− 1 neighbours before it.

A greedy colouring according to this order uses at most ∆(G ) colours.
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Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).

Case 2: G is regular, but it has a cut vertex v .

Then we can split G up into two graphs G1, G2 which are not regular.

vG1 G2

By Case 1, we can colour G1 and G2 with ∆(G ) colours which agree on v .
This gives us a colouring of G .
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Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).

Case 3: G is regular, 2-connected, and has a depth-first tree which is not a
path.

x

y z

Since G is 2-connected, G − y and G − z are connected. DFS tree means
a descendant of y is connected to an ancestor of x . Thus G − {y , z} is
connected.

Order the vertices y , z , followed by a reverse depth-first ordering of
G − {y , z} with x as the root.
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Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a
clique, or a balanced complete bipartite graph Kn,n.

By hypothesis, G is not an odd cycle or a clique, so G must be an even
cycle or a balanced complete bipartite graph on more than two vertices.

In either case, χ(G ) = 2 ≤ ∆(G ).

Ross Churchley (UVic) Graph theory haiku December 21, 2021 12 / 17



Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a
clique, or a balanced complete bipartite graph Kn,n.

By hypothesis, G is not an odd cycle or a clique, so G must be an even
cycle or a balanced complete bipartite graph on more than two vertices.

In either case, χ(G ) = 2 ≤ ∆(G ).

Ross Churchley (UVic) Graph theory haiku December 21, 2021 12 / 17



Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a
clique, or a balanced complete bipartite graph Kn,n.

By hypothesis, G is not an odd cycle or a clique, so G must be an even
cycle or a balanced complete bipartite graph on more than two vertices.

In either case, χ(G ) = 2 ≤ ∆(G ).

Ross Churchley (UVic) Graph theory haiku December 21, 2021 12 / 17



Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then χ(G ) ≤ ∆(G ).

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a
clique, or a balanced complete bipartite graph Kn,n.

By hypothesis, G is not an odd cycle or a clique, so G must be an even
cycle or a balanced complete bipartite graph on more than two vertices.

In either case, χ(G ) = 2 ≤ ∆(G ).

Ross Churchley (UVic) Graph theory haiku December 21, 2021 12 / 17



Brooks’ Theorem

Greedily colour,
ensuring neighbours follow

all except the last.

Choose the last vertex wisely:
friend of few or of leaders.
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Vizing’s Theorem

Vizing’s Theorem

For any simple graph G , χ′(G ) ≤ ∆(G ) + 1.
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Vizing’s Theorem

For any simple graph G , χ′(G ) ≤ ∆(G ) + 1.

By induction. Suppose G − v
has a (∆ + 1)-edge-colouring.

Consider the colours available
at each neighbour of v . If we
can find an SDR, we’re done.

■■
■■■

■■

■■

■□
■□■

□■

■□

■■□■■■□■

■□ □■
■□■■■□

■□■□□■

■

v

u
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Vizing’s Theorem

For any simple graph G , χ′(G ) ≤ ∆(G ) + 1.

Colour α is still available at
two vertices, but not at v .

Colour β is available at v ,
but none of its neighbours.

Idea: swap β for α at one
vertex, then make a trade to
colour vu.
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but none of its neighbours.

Idea: swap β for α at one
vertex, then make a trade to
colour vu.
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Vizing’s Theorem

Induction on n.
Swap available colours

and find SDR.
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Vizing’s Theorem

Graph theory haiku
Three short and beautiful proofs

Ross Churchley

University of Victoria
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