Graph theory haiku

Three short and beautiful proofs

Ross Churchley
University of Victoria

December 21, 2021

Ross Churchley (UVic) December 21, 2021 1/17



J.A.Bondy
U.S.R. Murty

Graph Theory

@ Springer

Adrian Bondy

Ross Churchley (UVic) Graph theory haiku December 21, 2021 2/17



Short Proofs of
Classical Theorems

Ore’s theorem (1960) on Hamilton circuits

Brooks’ theorem (1941) on vertex colouring
Vizing’s theorem (1964) on edge colouring

The Chvatal-Lovasz theorem (1974) on semi-kernels
Lu's theorem (1996) on arborescences of tournaments

Gutin's theorem (1994) on diameters of graph orientations
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Ore’'s Theorem

Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.
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Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Colour G blue

Ross Churchley (UVic) Graph theory haiku December 21, 2021 5/17



Ore's Theorem

Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Colour G blue and add red edges to
fill out K.
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Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Colour G blue and add red edges to
fill out K. Pick a Hamilton cycle C.
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Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Colour G blue and add red edges to
fill out K. Pick a Hamilton cycle C.

We will find a C" with more blue R
edges. /
'Y



Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Let xx* be a red edge in C.



Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Let xx* be a red edge in C.
Consider S = Ng(x)
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successors ST on C. X xt




Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Let xx* be a red edge in C.
Consider S = N¢(x) and their
successors ST on C. Now, X xt

de(xT) > n— de(x) / .
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Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Let xx* be a red edge in C.
Consider S = N¢(x) and their
successors ST on C. Now, X xt
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Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Let xx* be a red edge in C.
Consider S = Ng(x) and their
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Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Let xx* be a red edge in C.
Consider S = Ng(x) and their
successors ST on C. Now, X

do(x*) > n — dg(x) / .
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So x* is adjacent to a yT € ST



Let G be a simple graph on n > 3 vertices such that d(u) + d(v) > n for
any nonadjacent u,v. Then G contains a Hamilton cycle.

Let xx* be a red edge in C.
Consider S = Ng(x) and their

successors ST on C. Now, X xt
do(x*) > n — de(x) /
Y
=|V[—|S]

= V|- 15" /
> VA (STU{x})] y*
So x* is adjacent to a yT € ST and ) /

we can get a “bluer” cycle.




A red-blue K,:
bluest Hamilton circuit
lies fully in G.
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Brooks’ Theorem

If G is connected and is not an odd cycle or a clique, then x(G) < A(G).
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

A greedy colouring always has at most A(G) + 1 colours:
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

A greedy colouring always has at most A(G) + 1 colours:

S

How can we avoid using the last colour? Maybe we can order the vertices
such that no vertex has A(G) neighbours before it.
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 1: G is not regular.
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 1: G is not regular.

Use a reverse depth-first ordering, ending with a root r with d(r) < A(G).
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 1: G is not regular.

Use a reverse depth-first ordering, ending with a root r with d(r) < A(G).
Then every vertex except r has a neighbour which comes after it.
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 1: G is not regular.
Use a reverse depth-first ordering, ending with a root r with d(r) < A(G).

Then every vertex except r has a neighbour which comes after it. In
particular, every vertex has fewer than A(G) — 1 neighbours before it.
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 1: G is not regular.

Use a reverse depth-first ordering, ending with a root r with d(r) < A(G).
Then every vertex except r has a neighbour which comes after it. In
particular, every vertex has fewer than A(G) — 1 neighbours before it.

A greedy colouring according to this order uses at most A(G) colours.
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 2: G is regular, but it has a cut vertex v.

Then we can split G up into two graphs Gi, G» which are not regular.

By Case 1, we can colour G; and G, with A(G) colours which agree on v.
This gives us a colouring of G.
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BrOOkS‘ Theore’“ _

If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 3: G is regular, 2-connected, and has a depth-first tree which is not a
path.

Since G is 2-connected, G — y and G — z are connected. DFS tree means
a descendant of y is connected to an ancestor of x. Thus G — {y, z} is
connected.

Order the vertices y, z, followed by a reverse depth-first ordering of
G — {y, z} with x as the root.
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If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 4: Every depth-first tree of G is a path.
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Brooks' Theorem

If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a
clique, or a balanced complete bipartite graph K, ,.
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Brooks' Theorem

If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a
clique, or a balanced complete bipartite graph K, ,.

By hypothesis, G is not an odd cycle or a clique, so G must be an even
cycle or a balanced complete bipartite graph on more than two vertices.
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Brooks' Theorem

If G is connected and is not an odd cycle or a clique, then x(G) < A(G).

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a
clique, or a balanced complete bipartite graph K, ,.

By hypothesis, G is not an odd cycle or a clique, so G must be an even
cycle or a balanced complete bipartite graph on more than two vertices.

In either case, x(G) =2 < A(G). O
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Ross Churchley (UVic)

Greedily colour,
ensuring neighbours follow
all except the last.

Choose the last vertex wisely:
friend of few or of leaders.
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Vizing’'s Theorem

For any simple graph G, x'(G) < A(G) + 1.
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For any simple graph G, X'(G) < A(G) + 1.

By induction. Suppose G — v
has a (A + 1)-edge-colouring.
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For any simple graph G, x/(G) < A(G) + 1.

By induction. Suppose G — v
has a (A + 1)-edge-colouring.

Consider the colours available

at each neighbour of v. ‘\v
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For any simple graph G, x/(G) < A(G) + 1.
By induction. Suppose G — v
has a (A + 1)-edge-colouring.

Consider the colours available
at each neighbour of v. If we
can find an SDR, we're done.
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For any simple graph G, X'(G) < A(G) + 1.

A
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For any simple graph G, X'(G) < A(G) + 1.
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For any simple graph G, X'(G) < A(G) + 1.

Colour « is still available at
two vertices, but not at v.
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For any simple graph G, x/(G) < A(G) + 1.
Colour « is still available at
two vertices, but not at v.

Colour /7 is available at v,
but none of its neighbours.
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For any simple graph G, x/(G) < A(G) + 1.

Colour « is still available at
two vertices, but not at v.

Colour /7 is available at v,
but none of its neighbours.

Idea: swap [ for v at one
vertex, then make a trade to
colour vu.
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Induction on n.
Swap available colours
and find SDR.
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