Graph theory haiku Three short and beautiful proofs

Ross Churchley

University of Victoria

December 21, 2021

Adrian Bondy

J. A. Bond	h
ONDERSTE CLAUDE-BERNARD LEDN 1 AF	2
d met jebendefinde an jeren	
Realised Among 10, 2002, Revised Higs 1, 29	6
D0110.305(gi.305	25
NUMBET: We give proofs of On's theorem on Hamilton circuits, Brook economics where caloring, and "bing's theorem on edge costing, as we the Chulad-cost theorem on any eventses, a stream of Calor on g absorbances of tournaments, and a theorem of Calor on diameter constraints of graphs. These provides , while not challed yield with the absorbance of the stream of the stream of the stream of the absorbance of the stream o	122721
smale Book' downe. King's shower, dapaptic and books, damine daphyle ad	-
ORE'S THEOREM	
er proof of Ote's theorem [15] bears a clear resemblance to the proof of Dirac mean [10] given by Neraman [11], but is more direct.	ò
H's Theorem, Let G be a simple graph on at least finne vertices, in which is in of the deprese of any two non-adjacent switces is at least 1(G). Thus:	ii G

- Ore's theorem (1960) on Hamilton circuits
- Brooks' theorem (1941) on vertex colouring
- Vizing's theorem (1964) on edge colouring
- The Chvátal-Lovász theorem (1974) on semi-kernels
- Lu's theorem (1996) on arborescences of tournaments
- Gutin's theorem (1994) on diameters of graph orientations

Ore's Theorem

Let G be a simple graph on $n \ge 3$ vertices such that $d(u) + d(v) \ge n$ for any nonadjacent u, v. Then G contains a Hamilton cycle.

Colour G blue

Colour G blue and add red edges to fill out K_n .

Colour G blue and add red edges to fill out K_n . Pick a Hamilton cycle C.

Colour G blue and add red edges to fill out K_n . Pick a Hamilton cycle C. We will find a C' with more blue edges.

Let xx^+ be a red edge in C.

Let xx^+ be a red edge in C. Consider $S = N_G(x)$

Let xx^+ be a red edge in *C*. Consider $S = N_G(x)$ and their successors S^+ on *C*.

Let xx^+ be a red edge in *C*. Consider $S = N_G(x)$ and their successors S^+ on *C*. Now,

 $d_G(x^+) \ge n - d_G(x)$

Let xx^+ be a red edge in *C*. Consider $S = N_G(x)$ and their successors S^+ on *C*. Now,

$$d_G(x^+) \ge n - d_G(x)$$
$$= |V| - |S|$$

Let xx^+ be a red edge in *C*. Consider $S = N_G(x)$ and their successors S^+ on *C*. Now,

$$egin{aligned} d_G(x^+) &\geq n - d_G(x) \ &= |V| - |S| \ &= |V| - |S^+| \end{aligned}$$

Let xx^+ be a red edge in *C*. Consider $S = N_G(x)$ and their successors S^+ on *C*. Now,

$$egin{aligned} d_G(x^+) &\geq n - d_G(x) \ &= |V| - |S| \ &= |V| - |S^+| \ &> |V \setminus (S^+ \cup \{x^+\})| \end{aligned}$$

Let xx^+ be a red edge in *C*. Consider $S = N_G(x)$ and their successors S^+ on *C*. Now,

$$egin{aligned} d_G(x^+) &\geq n - d_G(x) \ &= |V| - |S| \ &= |V| - |S^+| \ &> |V \setminus (S^+ \cup \{x^+\})| \end{aligned}$$

So x^+ is adjacent to a $y^+ \in S^+$

Let xx^+ be a red edge in *C*. Consider $S = N_G(x)$ and their successors S^+ on *C*. Now,

$$egin{aligned} d_G(x^+) &\geq n - d_G(x) \ &= |V| - |S| \ &= |V| - |S^+| \ &> |V \setminus (S^+ \cup \{x^+\})| \end{aligned}$$

So x^+ is adjacent to a $y^+ \in S^+$ and we can get a "bluer" cycle.

A red-blue K_n: bluest Hamilton circuit lies fully in G.

Brooks' Theorem

If G is connected and is not an odd cycle or a clique, then $\chi(G) \leq \Delta(G)$.

A greedy colouring always has at most $\Delta(G) + 1$ colours:

How can we avoid using the last colour? Maybe we can order the vertices such that no vertex has $\Delta(G)$ neighbours before it.

Case 1: G is not regular.

Case 1: G is not regular.

Use a reverse depth-first ordering, ending with a root r with $d(r) < \Delta(G)$.

Case 1: G is not regular.

Use a reverse depth-first ordering, ending with a root r with $d(r) < \Delta(G)$. Then every vertex except r has a neighbour which comes after it.

Case 1: G is not regular.

Use a <u>reverse</u> depth-first ordering, ending with a root r with $d(r) < \Delta(G)$. Then every vertex except r has a neighbour which comes after it. In particular, every vertex has fewer than $\Delta(G) - 1$ neighbours before it.

Case 1: G is not regular.

Use a <u>reverse</u> depth-first ordering, ending with a root r with $d(r) < \Delta(G)$. Then every vertex except r has a neighbour which comes after it. In particular, every vertex has fewer than $\Delta(G) - 1$ neighbours before it.

A greedy colouring according to this order uses at most $\Delta(G)$ colours.

Case 2: G is regular, but it has a cut vertex v.

Then we can split G up into two graphs G_1 , G_2 which are not regular.

By Case 1, we can colour G_1 and G_2 with $\Delta(G)$ colours which agree on v. This gives us a colouring of G.

Case 3: G is regular, 2-connected, and has a depth-first tree which is not a path.

Since G is 2-connected, G - y and G - z are connected. DFS tree means a descendant of y is connected to an ancestor of x. Thus $G - \{y, z\}$ is connected.

Order the vertices y, z, followed by a reverse depth-first ordering of $G - \{y, z\}$ with x as the root.

Case 4: Every depth-first tree of G is a path.

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a clique, or a balanced complete bipartite graph $K_{n,n}$.

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a clique, or a balanced complete bipartite graph $K_{n,n}$.

By hypothesis, G is not an odd cycle or a clique, so G must be an even cycle or a balanced complete bipartite graph on more than two vertices.

Case 4: Every depth-first tree of G is a path.

Proposition (Chartrand and Kronk)

If every DFS tree of a connected graph G is a path, then G is a cycle, a clique, or a balanced complete bipartite graph $K_{n,n}$.

By hypothesis, G is not an odd cycle or a clique, so G must be an even cycle or a balanced complete bipartite graph on more than two vertices. In either case, $\chi(G) = 2 \le \Delta(G)$. Greedily colour, ensuring neighbours follow all except the last.

Choose the last vertex wisely: friend of few or of leaders.

Vizing's Theorem

For any simple graph G, $\chi'(G) \leq \Delta(G) + 1$.

By induction. Suppose G - v has a $(\Delta + 1)$ -edge-colouring.

By induction. Suppose G - v has a $(\Delta + 1)$ -edge-colouring.

Consider the colours available at each neighbour of v.

By induction. Suppose G - v has a $(\Delta + 1)$ -edge-colouring.

Consider the colours available at each neighbour of v. If we can find an SDR, we're done.

Ross Churchley (UVic)

Colour α is still available at two vertices, but not at v.

Ross Churchley (UVic)

Colour α is still available at two vertices, but not at v.

Colour β is available at v, but none of its neighbours.

Colour α is still available at two vertices, but not at v.

Colour β is available at v, but none of its neighbours.

Colour α is still available at two vertices, but not at v.

Colour β is available at v, but none of its neighbours.

Colour α is still available at two vertices, but not at v.

Colour β is available at v, but none of its neighbours.

Colour α is still available at two vertices, but not at v.

Colour β is available at v, but none of its neighbours.

Colour α is still available at two vertices, but not at v.

Colour β is available at v, but none of its neighbours.

Colour α is still available at two vertices, but not at v.

Colour β is available at v, but none of its neighbours.

Colour α is still available at two vertices, but not at v.

Colour β is available at v, but none of its neighbours.

Induction on *n*. Swap available colours and find SDR.

Graph theory haiku Three short and beautiful proofs

Ross Churchley

University of Victoria

December 21, 2021